Platinum nanoparticles functionalized with ethynylphenylboronic acid derivatives: selective manipulation of nanoparticle photoluminescence by fluoride ions.
نویسندگان
چکیده
Platinum nanoparticles functionalized with 4-ethynylphenylboronic acid pinacol ester (Pt-EPBAPE) were successfully synthesized by a simple chemical reduction procedure. Because of the formation of conjugated metal-ligand interfacial linkages, the resulting nanoparticles exhibited apparent photoluminescence arising from the nanoparticle-bound acetylene moieties that behaved analogously to diacetylene derivatives. Interestingly, the nanoparticle photoluminescence was markedly quenched upon the addition of fluoride ions (F⁻). In contrast, significantly less or virtually no change was observed with a variety of other anions such as Cl⁻, Br⁻, I⁻, NO₃⁻, HSO₄⁻, H₂PO₄⁻, ClO₄⁻, BF₄⁻, and PF₆⁻. The high selectivity toward fluoride ion is most probably because of the strong specific affinity of the boronic acid moiety to fluoride. The formation of B-F bonds led to the conversion of Bsp² to Bsp³, as manifested in ¹¹B NMR measurements, which impacted the intraparticle charge delocalization between the particle-bound acetylene moieties and hence the nanoparticle photoluminescence.
منابع مشابه
Platinum nanoparticles functionalized with acetylene derivatives: Electronic conductivity and electrocatalytic activity in oxygen reduction
Stable platinum nanoparticles were prepared by the self assembly of acetylene derivatives (1-alkynes, 4-ethylphenylacetylene, and 4-tert-butylphenylacetylene) onto bare Pt colloid surfaces. Transmission electron microscopic measurements showed that the nanoparticles exhibited an average core size of 2.85 ± 0.62 nm. FTIR study showed that with the acetylene ligands adsorbed onto the Pt nanoparti...
متن کاملFe3O4@silica sulfuric acid nanoparticles as a potent and recyclable solid acid catalyst for the synthesis of indole derivatives
Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+ in aqueous NaOH. Then silica was coated on the obtained nanoparticles and the whole composite was functionalized with chlorosulfonic acid in CH2Cl2. The obtained nanocomposite (Fe3O4@SiO2-SO3H) was characterized by FT-IR, VSM and XRD techniques and was used as an efficient catalyst in condensation reaction of ind...
متن کاملEnhancement of the electrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenyl functionalization.
Chlorophenyl-stabilized platinum nanoparticles (1.85 nm) exhibited electrocatalytic activity for oxygen reduction up to 3 times higher than that of commercial Pt/C catalysts. Similar enhancement was observed with naked Pt/C functionalized by the same chlorophenyl fragments, suggesting the important role of organic capping ligands in the manipulation of nanoparticle electrocatalytic performance.
متن کاملSelf-assembly and chemical reactivity of alkenes on platinum nanoparticles.
Stable platinum nanoparticles were synthesized by the self-assembly of alkene derivatives onto the platinum surface, possibly forming platinum-vinylidene (Pt═C═CH-) or -acetylide (Pt-C≡) interfacial bonds as a result of dehydrogenation and transformation of the olefin moieties catalyzed by platinum. Transmission electron microscopic measurements showed that the nanoparticles were well-dispersed...
متن کاملPlatinum Nanoparticle Electrode Modified Iodine using Cyclic Voltammetry and Chronoamperometry for Determination of Ascorbic Acid
This study investigated the oxidation of ascorbic acid (Vitamin C) using a platinum nanoparticle electrode coated with an iodine monolayer, called a modified electrode. The electrode were grown using the cyclic voltammetry technique and the electrochemical measurements were taken using the cyclic voltammetry and chronoamperometric technique. In the case of platinum nanoparticle electrode modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 30 18 شماره
صفحات -
تاریخ انتشار 2014